Klasifikasi Masalah Pada Komunitas Marah-Marah di Twitter Menggunakan Long Short-Term Memory

Dian Sukma Hani, Chanifah Indah Ratnasari

Abstract


The rapid development of social media goes hand in hand with the increase in social media users. Among the social media platforms widely used in Indonesia, Twitter is one of the most popular. On Twitter, users are free to share every moment they experience or what they think. Many users use Twitter as a medium to express their emotions, as is what happens in angry communities. There are no special requirements to join as a community member other than getting admin approval. This community provides a place for its members to vent all kinds of anger they feel. This research classifies angry community tweets to find out the types of problems in these tweets. The results of this research can help in understanding communication and behavior patterns in angry communities, which can provide deeper insight into the social dynamics within them.Text data is retrieved via web scraping techniques, and then processed through a series of preprocessing steps, including unnecessary character removal, normalization, and tokenization. The classification uses the Long Short-Term Memory (LSTM) algorithm with six problem category classes, namely Study, Romance, Family, Career/Work, Person/Personal, and Swearing. After modeling, the model accuracy was 91.94%. The model was built using an embedding layer, Long Short-Term Memory (LSTM) layer, dense layer, and dropout layer which was run for 10 epochs. Model evaluation is carried out using metrics such as accuracy, precision, recall, and F1-score to measure model performance. The value resulting from the evaluation results using the confusion matrix is more than 50, this indicates that the LSTM model is able to classify the problem well.

Keywords


Classification; Problem Classification; Twitter; LSTM; Deep Learning

Full Text:

PDF

References


W. O. S. Nurhaliza and N. Fauziah, “Komunikasi Kelompok dalam Virtual Community,†Komunida: Media Komunikasi dan Dakwah, vol. 10, no. 1, pp. 18–38, 2020, doi: 10.35905/komunida.v7i2.

L. Luthfiyanti, “Pemanfaatan Media Sosial Facebook dalam Pembelajaran Bahasa Indonesia di Sekolah,†Prosiding Seminar Nasional Linguistik VII, 2019.

S. Peng et al., “A Survey on Deep Learning for Textual Emotion Analysis in Social Networks,†Digital Communications and Networks, 2021, doi: 10.1016/j.dcan.2021.10.003.

B. Gaind, V. Syal, and S. Padgalwar, “Emotion Detection and Analysis on Social Media,†Jan. 2019, [Online]. Available: http://arxiv.org/abs/1901.08458

S. Ni Made and S. Ni Ketut, “Penyimpangan Perilaku Remaja di Perkotaan,†KULTURISTIK: Jurnal Bahasa dan Budaya, vol. 4, no. 2, pp. 51–59, Jun. 2020, doi: 10.22225/kulturistik.4.2.1892.

M. Fauzan Alamari, “Imigran dan Masalah Integrasi Sosial,†Jurnal Dinamika Global, vol. 5, no. 2, 2020.

L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,†Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 2, p. 183, Apr. 2020, doi: 10.26418/justin.v8i2.36776.

A. T. Bagus, “Klasifikasi Emosi Pada Teks Menggunakan Metode Deep Learning,†2022.

M. Ihsan, B. S. Negara, and S. Agustian, “LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter,†Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 79–89, May 2022, doi: 10.31849/digitalzone.v13i1.9950.

N. A. Hasanah, N. Suciati, and D. Purwitasari, “Pemantauan Perhatian Publik terhadap Pandemi COVID-19 melalui Klasifikasi Teks dengan Deep Learning,†Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 193–202, Feb. 2021, doi: 10.29207/resti.v5i1.2927.

F. Nurona Cahya et al., “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN),†SISTEMASI:Jurnal Sistem Informasi, vol. 10, no. 3, pp. 618–626, 2021

O. V. Putra, A. Musthafa, and K. P. Wibowo, “Klasifikasi Ekspresi Teks Berbahasa Jawa Menggunakan Algoritma Long Short Term Memory,†Komputika : Jurnal Sistem Komputer, vol. 10, no. 2, pp. 137–143, Aug. 2021, doi: 10.34010/komputika.v11i1.4616.

R. D. W. Santosa, M. A. Bijaksana, and A. Romadhony, “Implementasi Algoritma Long Short-Term Memory (LSTM) untuk Mendeteksi Penggunaan Kalimat Abusive Pada Teks Bahasa Indonesia,†e-Proceeding of Engineering, vol. 8, no. 1, p. 691, Feb. 2021.

E. Dwi Pratama, “Implementasi Model Long-Short Term Memory (LSTM) pada Klasifikasi Teks Data SMS Spam Berbahasa Indonesia,†Jul. 2022

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),†Jurnal Media Informatika BudiDarma, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.

V. Fitriyana, L. Hakim, D. C. R. Novitasari, and A. H. Asyhar, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,†Jurnal Buana Informatika, vol. 14, no. 1, pp. 40–49, 2023.

B. Arief, H. Kholifatullah, and A. Prihanto, “Penerapan Metode Long Short Term Memory Untuk Klasifikasi Pada Hate Speech,†Journal of Informatics and Computer Science, vol. 04, 2023.

M. F. Al-Shufi and A. Erfina, “Sentimen Analisis Mengenai Aplikasi Streaming Film Menggunakan Algoritma Support Vector Machine di Play Store,†SEMANTIK ( Seminar Nasional Sistem Informasi dan Manajemen Informatika), Aug. 2021.

Norhikmah and Rumini, “Klasifikasi Peminjaman Buku Menggunakan Neural Network Backpropagation,†Jurnal Sistem Informasi, vol. 9, no. 1, pp. 1–15, 2020.

A. Agustiana and F. Yuliani, “Analisis Stakeholder dalam Implementasi Program Kartu Prakerja dimasa Pandemi COVID-19 di Kota Pekanbaru,†JIA, vol. 9, no. 3, pp. 166–170, 2021.

Syamsuddin, “Kepemimpinan Kepala Sekolah dan Pengembangan Budaya di Sekolah,†Al asma: Journal of Islamic Education, vol. 2, no. 1, May 2020.

Lusiani, A. Hendrawan, and S. Wally, “Analisa Kemampuan Siswi SMK Dalam Pengklasifikasian Gejala Abiotik (Sifat Fisika) dan Gejala Biotik serta Kaitannya dengan Bidang Kemaritiman,†Saintara, vol. 4, no. 2, 2020.

D. K. A’yun and Erman, “Kemampuan Siswa Mengklasifikasi Kingdom Animalia Invertebrata: Studi Kasus di SMP Negeri 1 Jabon,†PENSA E-JURNAL : PENDIDIKAN SAINS, vol. 7, no. 3, pp. 361–366, Dec. 2019, [Online]. Available: https://jurnalmahasiswa.unesa.ac.id/index.php/pensa/index

A. Nurdin, B. Anggo, S. Aji, A. Bustamin, and Z. Abidin, “Perbandingan Kinerja Word Embedding Word2vec, Glove, dan Fasttext pada Klasifikasi Teks,†Jurnal TEKNOKOMPAK, vol. 14, no. 2, p. 74, 2020.

K. Rahmata, “Implementasi Metode Word2vec dan Vector Space Model pada Sistem Temu Kembali Informasi Pembelajaran Sirah Nabawiyah,†2020.

H. F. Fadli and A. F. Hidayatullah, “Identifikasi Cyberbullying pada Media Sosial Twitter Menggunakan Metode LSTM dan BiLSTM,†AUTOMATA, vol. 2, no. 1, Jan. 2021.

khairunnisa’, “Prediksi Daya Pembangkit Listrik PV Satu Hari Ke Depan untuk Memudahkan Manajemen Energi pada Sistem Menggunakan Neural Network,†2020.

A. Salim, “Estimasi Kecepatan Kendaraan Melalui Video Pengawas Lalu Lintas Menggunakan Parallel Line Model,†2020.

O. N. Putri, “Implementasi Metode CNN Dalam Klasifikasi Gambar Jamur pada Analisis Image Processing,†2020.

I. K. Syahputra, F. Abdurrachman Bachtiar, and S. A. Wicaksono, “Implementasi Data Mining untuk Prediksi Mahasiswa Pengambil Mata Kuliah dengan Algoritme Naive Bayes,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 2548–964, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

I. S. Ardan, J. Sulastri, and A. Rakhmawati, “ANALISIS PERFORMANSI ENTITY MATCHING DENGAN FUZZY WUZZY PADA ARTIKEL FAIRNESS AI,†JURNAL TEKNOINFO, vol. 17, no. 2, pp. 548–556, Jul. 2023, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index




DOI: https://doi.org/10.30865/mib.v7i4.6755

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.