Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV

Setya Putra Adenugraha, Veri Arinal, Dadang Iskandar Mulyana

Abstract


Banana fruit or in scientific language is called Musa Paradisiaca. One type of banana that is easy to grow and develop in the tropics of Indonesia is the Cavendish Banana or commonly known as the Ambon Banana. The quality of Ambon bananas must be maintained because Ambon bananas grown in Indonesia also supply the needs of foreign markets. The quality of bananas is very influential from the time of harvesting, the level of maturity of bananas is related to marketing reach. Basically, farmers use manual methods in determining the maturity level of Ambon bananas, so there are several factors that can make the classification results less accurate. Based on these problems, a system was made to classify the maturity level of Ambon bananas by utilizing the RGB and HSV color features using the K-Nearest Neighbor (KNN) method. Classification uses image processing by utilizing matlab software for making a classification system with 3 classes, namely raw, ripe, and overcooked. The results of this study are expected to help Ambon banana farmers in classifying the maturity level of Ambon bananas. In this study using data obtained from the place of observation. The data used in this study were 41 data which were divided into 30 training data and 11 test data. The data is classified using the KNN method by measuring the distance to the nearest neighbor with a value of K=5. From this study, the results obtained accuracy of 90.9% with the results of the classification of test data as many as 10 data received accurate classification results and 1 data received inaccurate classification results.

Keywords


K-NN; RGB; HSV; Matlab; Image Processing

Full Text:

PDF

References


Administrator, “Yang Belum Banyak Diketahui tentang Pisang Indonesia,†https://indonesia.go.id/, 2019. https://indonesia.go.id/kategori/kuliner/994/yang-belum-banyak-diketahui-tentang-pisang-indonesia (accessed May 26, 2021).

Z. D. Lestari, N. Nafi’iyah, and P. H. Susilo, “Sistem Klasifikasi Jenis Pisang Berdasarkan Ciri Warna HSV Menggunakan Metode K-NN,†Semin. Nas. Teknol. Inf. dan Komun., pp. 11–15, 2019.

Indarto and Murinto, “Deteksi Kematangan Buah Pisang Berdasarkan Fitur Warna Citra Kulit Pisang Menggunakan Metode Transformasi Ruang Warna HIS,†J. Ilm. Inform., vol. V, no. 1, pp. 15–21, 2017.

C. P. Iklima, M. Nasir, and HariTohaHidayat, “Klasifikasi Jenis Pisang Menggunakan Metode K- Nearest Neighbor ( KNN ),†Teknol. Rekayasa Inf. dan Komput., vol. 1, no. 1, pp. 11–14, 2017.

I. Siswanto, E. Utami, and S. Raharjo, “Klasifikasi Tingkat Kematangan Buah Berdasarkan Warna dan Tekstur Menggunakan Metode K-Nearest Neighbor dan Nearest Mena Classifier,†Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, p. 93, 2020, doi: 10.35585/inspir.v10i1.2559.

N. Nafi’iyah, H. Khotimah, and Masruroh, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,†J. Elektron. List. dan Teknol. Inf. Terap., vol. 1, no. 2, pp. 1–4, 2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti.

M. Ichwan, I. A. Dewi, and Z. M. S, “Klasifikasi Support Vector Machine (SVM) Untuk Menentukan TingkatKemanisan Mangga Berdasarkan Fitur Warna,†MIND J., vol. 3, no. 2, pp. 16–23, 2019, doi: 10.26760/mindjournal.v3i2.16-23.

D. Yulianto, R. N. Whidhiasih, and M. Maimunah, “Klasifikasi Tahap Kematangan Pisang Ambon Berdasarkan Warna Menggunakan Naive Bayes,†PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 5, no. 2, pp. 60–67, 2018, doi: 10.33558/piksel.v5i2.268.

E. H. Rachmawanto and A. Salam, “Pengukuran tingkat kematangan kopi robusta menggunakan algoritma k-nearest neighbor,†Pros. SENDI_U, pp. 204–210, 2018.

R. N. Auliasari, L. Novamizanti, and N. Ibrahim, “Identifikasi Kematangan Daun Teh Berbasis Fitur Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV),†JUITA J. Inform., vol. 8, no. 2, p. 217, 2020, doi: 10.30595/juita.v8i2.7387.

M. Widyaningsih, “Identifikasi Kematangan Buah Apel Dengan Gray Level Co-Occurrence Matrix (GLCM),†J. SAINTEKOM, vol. 6, no. 1, p. 71, 2017, doi: 10.33020/saintekom.v6i1.7.

D. Wandi and N. Hayati, “Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna Hue Saturation Intensity ( HSI ) dan Hue Saturation Value ( HSV ),†J. MEDIA Inform. BUDIDARMA, vol. 5, pp. 308–316, 2021, doi: 10.30865/mib.v5i1.2562.

R. Fadholi, Y. A. Sari, and F. A. Bachtiar, “Pengenalan Citra Makanan Tradisional menggunakan Fitur Hue Saturation Pengenalan Citra Makanan Tradisional menggunakan Fitur Hue Saturation Value dan Fuzzy k-Nearest Neighbor,†Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 6556–6566, 2019.

D. Syahid, J. Jumadi, and D. Nursantika, “Sistem Klasifikasi Jenis Tanaman Hias Daun Philodendron Menggunakan Metode K-Nearest Neighboor (KNN) Berdasarkan Nilai Hue, Saturation, Value (HSV),†J. Online Inform., vol. 1, no. 1, p. 20, 2016, doi: 10.15575/join.v1i1.6.

D. Novianto and T. Sugihartono, “Sistem Deteksi Kualitas Buah Jambu Air Berdasarkan Warna Kulit Menggunakan Algoritma Principal Component Analysis ( Pca ) dan K-Nearest Neigbor ( K-NN ),†J. Ilm. Inform. Glob., vol. 11, no. 2, pp. 42–47, 2020.

S. F. Kusuma, R. E. Pawening, and R. Dijaya, “Otomatisasi klasifikasi kematangan buah mengkudu berdasarkan warna dan tekstur,†Regist. J. Ilm. Teknol. Sist. Inf., vol. 3, no. 1, p. 17, 2017, doi: 10.26594/r.v3i1.576.

C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,†J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.

L. Indriyani, W. Susanto, and D. Riana, “Aplikasi Matlab Pada Pengukuran Diameter buah Jeruk Keprok,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 2, no. 1, pp. 46–52, 2017.




DOI: https://doi.org/10.30865/mib.v6i1.3287

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.