Komparasi Jarak Euclidean dan Manhattan Pada Algoritma K-Nearest Neighbor Dalam Mendeteksi Penyakit Diabetes Mellitus

Agustin Ely Rahayu, Abd. Charis Fauzan, Harliana Harliana

Abstract


Diabetes Mellitus is a chronic disease. This disease is caused by an increase in blood sugar levels in the body, it can cause diseases such as heart disease, obesity, and eye, kidney, and nerve diseases. Detection of Diabetes Mellitus is usually carried out by laboratory tests, so that patients have to undergo several medical tests to provide input values to a computerized diagnostic system which has proven to be expensive and has long queue times. From these problems, an artificial intelligence system is needed to diagnose this disease more easily and quickly. Therefore, the researcher aims to use an intelligent system to produce the highest accuracy from the results of the classification test using the K-Nearest Neighbor (K-NN) method with Euclidean distance and Manhattan distance. The class classifications used were pregnancy calculations, blood sugar in blood, blood pressure, skin fold thickness, insulin, body weight, diabetes genealogy dysfunction, and age. The research data in the form of datasets amounted to 450 datasets and the data was divided into two to determine the highest accuracy of 80% test data and 20% for training data. The highest accuracy using Euclidean distance is 84% with a value of K=5, and secondly, the Manhattan distance has the highest accuracy of 82% with a value of K=7.

Keywords


Diabetes Mellitus; K-Nearest Neighbor (K-NN); Euclidean Distance; Manhattan Distance

Full Text:

PDF

References


V. Agustina, M. I. Tekege, F. Carolin, A. D. Wulandari, A. Weya, and O. G. C. Lampongajo, “Deteksi Dini Penyakit Diabetes Melitus,†J. Magistrorum Sch., vol. 02, no. 02, pp. 300–309, 2021.

K. Saxena, Z. Khan, and S. Singh, “Diagnosis of Diabetes Mellitus using K Nearest Neighbor Algorithm,†Int. J. Comput. Sci. Trends Technol., vol. 2, no. 4, pp. 36–43, 2014.

H. Bhatt, S. Saklani, and K. Upadhayay, “Anti-oxidant and anti-diabetic activities of ethanolic extract of Primula Denticulata Flowers,†Indones. J. Pharm., vol. 27, no. 2, pp. 74–79, 2016, doi: 10.14499/indonesianjpharm27iss2pp74.

S. Kusumadewi, “Aplikasi Informatika Medis untuk Penatalaksanaan Diabetes Melitus Secara Terpadu,†Semin. Nas. Apl. Teknol. Inf., vol. 2009, no. Snati, pp. C-22-C–27, 2009.

F. M. Hana, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,†J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47970/siskom-kb.v4i1.173.

Infodatin 2020, “Infodatin-2020-Diabetes-Melitus.pdf.†.

I. Hikmawati and R. Setiyabudi, “Hipertensi Dan Diabetes Militus Sebagai Penyakit Penyerta Utama Covid-19 Di Indonesia Hypertension and Diabetes Mellitus As Covid-19 Comorbidities in Indonesia,†Pros. Semin. Nas. Lppm Ump, vol. 0, no. 0, pp. 95–100, 2020, [Online]. Available: https://semnaslppm.ump.ac.id/index.php/semnaslppm/article/view/224/219%0Ahttps://semnaslppm.ump.ac.id/index.php/semnaslppm/article/view/224.

J. I. Kesehatan and S. Husada, “Early Detection of Diabetes Mellitus Risk in Stikes Megarezky Makassar Teaching Staff,†Juni, vol. 11, no. 1, pp. 540–547, 2020, doi: 10.35816/jiskh.v10i2.343.

E. Hasmin et al., “Sistem Pakar Prediksi Penyakit Diabetes Menggunakan Metode K-NN Berbasis Android,†vol. 8, no. 2, pp. 359–370, 2022.

A. Y. Pratama and S. Yunita, “Komparasi Metode Weighted Product ( WP ) Dan Simple Additive Weighting ( SAW ) Pada Sistem Pendukung Keputusan Dalam Menentukan Pemberian Beasiswa,†vol. 4, no. September, pp. 12–24, 2022, doi: 10.30865/json.v4i1.4593.

N. Hidayati and A. Hermawan, “K-Nearest Neighbor ( K-NN ) algorithm with Euclidean and Manhattan in classification of student graduation,†vol. 2, no. 2, pp. 86–91, 2021.

A. Prasatya, R. R. A. Siregar, and R. Arianto, “Penerapan Metode K-Means Dan C4.5 Untuk Prediksi Penderita Diabetes,†Petir, vol. 13, no. 1, pp. 86–100, 2020, doi: 10.33322/petir.v13i1.925.

R. K. Dinata, H. Akbar, and N. Hasdyna, “Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus,†Ilk. J. Ilm., vol. 12, no. 2, pp. 104–111, 2020, doi: 10.33096/ilkom.v12i2.539.104-111.

A. K. Dan, L. V. Q. Untuk, and K. Data, “Analisis perbandingan pada metode penghitungan jarak antar data pada algoritma k-nn dan lvq untuk klasifikasi data,†2020.

Rzki Mutiara Sari, “Aplikasi Deteksi Dini Diabetes Mellitus Menggunakan Modified K – Nearest Neighbor,†2018.

A. Maulida, “Penerapan Metode Klasifikasi K-Nearest Neigbor Pada Dataset Penderita Penyakit Diabetes,†Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020.

S. Widodo and H. Brawijaya, “Clustering Kanker Serviks Berdasarkan Perbandingan Euclidean dan Manhattan Menggunakan Metode K-Means,†vol. 5, no. April, pp. 687–694, 2021, doi: 10.30865/mib.v5i2.2947.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,†J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.

A. P. Agustin, A. C. Fauzan, and Harliana, “Implementasi K-Nearest Neighbor Dengan Jarak Minkowski Untuk Deteksi Dini Covid-19 Pada Citra Ct-Scan Paru - Paru,†J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 1, pp. 23–30, 2022.




DOI: https://doi.org/10.30865/json.v4i2.5046

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Agustin Ely Rahayu, Abd. Charis Fauzan, Harliana Harliana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.